Immuno-Protective Effect of Aqueous Extract of *Ocimum gratissimum* Leaf in Cyclophosphamide-Induced Myelotoxicity in Wistar Rat

Ifeanyi Anthony Egwuatu, Emeka Godson Anyanwu, Chiadikobi Lawrence Ozoemena, Christian Chiemeka Ozor, Osinachi Francis Ozoemena and Emmanuel N. Obikili

Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, Enugu State University of Science and Technology (ESUT), Enugu State, Nigeria.

Department of Anatomy, University of Nigeria, Enugu Campus (UNEC), Enugu State, Nigeria.

Department of Surgery, Faculty of Medical Sciences, College of Medicine, University of Nigeria, Ituku-Ozalla Campus, Enugu State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMMR/2022/v34i2231576

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle.com/review-history/91719

Original Research Article

ABSTRACT

The bone marrow is the manufacturing center of blood cells; the suppression of its activity causes a deficiency of blood cells. This condition can rapidly lead to life-threatening infections. *Ocimum gratissimum* plays a vital role in preventing some disease conditions, but its hematological effects on the bone marrow have not been documented much. This study is designed to investigate the immuno-protective activity of the aqueous leaf extract of *Ocimum gratissimum* in cyclophosphamide-induced myelotoxicity. Twenty-four Wistar rats aged two to three months, weighing 170-200 g were used for the study. The rats were divided into six groups of four rats each, labeled A to F. The rats in the control group (group A) were given feed and water. Group B was administered with 3 mg/kg of cyclophosphamide intraperitoneally daily for seven days to induce myelotoxicity. Groups C and D were treated daily with 100 mg/kg and 200 mg/kg of the extract for fourteen (14) days respectively. Groups E and F were treated with the extract for seven (7) days and then induced and treated with myelotoxicity and extract simultaneously for the next seven (7) days.

Corresponding author: E-mail: chiadikobi.ozoemena@esut.edu.ng;
1. INTRODUCTION

“Cancer and its treatment have over the years posed great difficulties in the field of medicine. Some of the treatment options like chemotherapy have discouraging side effects which on their own pose a threat to the life of the oncology patient. Myelosuppression and liver injury is the most common dose-limiting side effect of chemotherapy” [1]. The bone marrow is the spongy tissue in the center of the bones. It is where red blood cells (RBCs), white blood cells (WBCs), and platelets are made. With bone marrow suppression, the bone marrow doesn’t make normal numbers of blood cells. It leads to lower levels of one or more types of blood cells. Bone marrow suppression is also called myelosuppression.

“The medicinal plants are rich in secondary metabolites (which are potential sources of drugs) and essential oils of therapeutic importance. The important advantages claimed for therapeutic uses of medicinal plants in various ailments besides being economical, effective, and easily available, are their safety” [2]. “Because of these advantages, medicinal plants have been widely used by traditional medical practitioners in their day-to-day practice. According to a survey (1993) by World Health Organization (WHO), the practitioners of the traditional system of medicine treat about 80% of patients in India, 85% in Burma, and 90% in Bangladesh” [3].

“Herbal medications are used widely in developing countries for the treatment of various diseases and ailments. This is because they are seen as alternatives to orthodox medicines in terms of costs and perceived side effects” [4]. “One of the main problems found in the field of medicinal plants is the lack of pharmacological, toxicological, and clinical evidence. In many cases, this practice is commonly associated with their traditional use. Only a small fraction of thousands of medicinal plants used in the world have been rigorously tested in controlled studies, therefore the evidence of toxicity risks and verification of efficacy is even lower” [5].

“Ocimum gratissimum, also known as Clove Basil, African Basil, and in Hawaii as Wild Basil, is a specie of Ocimum. It is native to Africa, Madagascar, Southern Asia, and the Bismarck Archipelago, and naturalized in Polynesia, Hawaii, Mexico, Panama, West Indies, Brazil, and Bolivia” [6-11]. “Ocimum gratissimum is one of the leafy vegetables consumed by Nigerians. It is usually seen as a small shrub with many branches and simple oval leaves. The leaves are used as food additives for their believed nutritive and medicinal values” [12]. “It also adds flavor or aroma to the food. It is used mainly as a spice” [13,14]. “It is a medicinal plant that can be used for therapeutic purposes or as a precursor for the synthesis of curative drugs” [15]. It can be used as a flavoring agent in a pharmaceutical product. The Ocimum gratissimum oil could be used to mask the bitter taste of most drugs, particularly the anti-malaria tablets [16]. Although much has been documented on the medicinal properties of this plant, this work, however, is designed to evaluate the myelo-protective property of the extract of this plant to know the best extract to use in the treatment or amelioration of myelotoxicity in folk medicine.

2. MATERIALS AND METHODS

2.1 Plant Material Collection

Fresh plant leaves of Ocimum gratissimum were harvested from a garden in the University of Nigeria, Enugu Campus. The plant was
authenticated by a taxonomist at the Department of Botany, University of Nigeria, Nsukka.

2.2 Plant Extraction and Phytochemical Analysis

Fresh leaves of Ocimum gratissimum were washed in fresh water and air dried in the laboratory at room temperature. The air-dried leaves were milled into fine powder in an electric blender and the fine powder was soaked in 2 liters of distilled water for 24 hours, filtered with Whatman No.1 filter paper (150 mm), and evaporated with a water bath / rotary evaporator at 50°C to crude extract of Ocimum gratissimum. Crude extract residue was weighed and dissolved in distilled water for use on each day of our experiment [17]. 10 g of crude extract was dissolved in 100 ml of normal saline to get the stock solution of extract used for daily administration.

Phytochemical screening was carried out to qualitatively assess the secondary metabolites in the plant leaf extract using the standard laboratory procedures of precipitation and coloration reaction as described by Sofowara [12] to identify the secondary metabolites present.

2.3 Animal Procurement

Twenty-four (24) male (170 g-200 g) adult Wistar rats were used for the experiment. After being purchased from the animal house of College of Medicine, University of Nigeria, Enugu Campus, they were housed in aluminum cages, placed in a well-ventilated house with optimum condition (temperature 30°C photoperiod; 12 hours natural light and 12 hours dark; humidity is 40-50%). The animals were fed growers mash manufactured by Top Feed Nigeria Limited and allowed water ad libitum. They were allowed an acclimatization period of 2 weeks and throughout the experimental period; the animals were handled according to the guidelines for animal research in the National Institute of Health guidelines for care and use of laboratory animals. The study was carried out per the principles of laboratory animal care and standard experimental procedure.

2.4 Body Weight Measurement and Animal Sacrifice

2.4.1 Measurement of the body weight of all the animals in each group

The body weights of all the animals in each group were measured and recorded on the first and last days of study before sacrifice. The measurements were done using a digital electronic scale and recorded to the nearest gram. At the end of the 14 days treatment period, the animals were sacrificed with an anesthetic agent called thiopental at a dose of 50 mg/kg body weight which was injected intraperitoneally 24 hours post-treatment.

Table 1. Experimental design and administration

<table>
<thead>
<tr>
<th>Experimental groups</th>
<th>Rats</th>
<th>Administration</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A (−ve control)</td>
<td>4</td>
<td>CONTROL</td>
<td>Distilled water and food pellets were only given for 14 days.</td>
</tr>
<tr>
<td>Group B</td>
<td>4</td>
<td>Cyclophosphamide (3 mg/kg)</td>
<td>3 mg/kg body weight of cyclophosphamide was given without treatment per day for 14 days.</td>
</tr>
<tr>
<td>Group C (Extract LD)</td>
<td>4</td>
<td>OC (100 mg/kg)</td>
<td>100 mg/kg of the extract was only given daily for 14 days.</td>
</tr>
<tr>
<td>Group D (Extract HD)</td>
<td>4</td>
<td>OC (200 mg/kg)</td>
<td>200 mg/kg of the extract was only given daily for 14 days.</td>
</tr>
<tr>
<td>Group E (Protective)</td>
<td>4</td>
<td>Cyclophosphamide 3 mg/kg + OC 100 mg/kg</td>
<td>100 mg/kg of the extract was given per day for 7 days before myelotoxicity was induced through the administration of 3 mg/kg of cyclophosphamide per day for the next seven days.</td>
</tr>
<tr>
<td>Group F (Protective)</td>
<td>4</td>
<td>Cyclophosphamide 3 mg/kg + OC 200 mg/kg</td>
<td>200 mg/kg of the extract was given per day for 7 days before myelotoxicity was induced through the administration of 3 mg/kg of cyclophosphamide per day for the next seven days.</td>
</tr>
</tbody>
</table>

*OC = Ocimum gratissimum.
HD = High dose; LD = Low dose
2.5 Blood Analysis

On the 15th day, Blood samples were collected from each of the groups with the aid of capillary tubes through the medial optical vessels for evaluation of blood parameters (complete blood count). Complete blood count was performed with an automated hematology system (Sysmex KX-2N hematology analyzer, Sysmex Incorporation Kobe, Japan).

2.6 Histological Study

The histological analyses of the tissues were done according to the method of Drury [18]. The stained tissues were micrographed and interpreted by a pathologist at the University of Nigeria, Nsukka.

2.7 Statistical Analysis

Results of hematological analysis (Total blood count) were analyzed using SPSS (version 21), expressed as Mean ± Standard Error of Mean (SEM). Statistical differences in the means between groups were analyzed using one-way ANOVA (Analysis of variance). P-values less than 0.05 were considered to be statistically significant.

3. RESULTS

3.1 Result of Phytochemical Analysis

The phytochemical analysis of the aqueous leaf extract of *Ocimum gratissimum* revealed the presence of tannins, steroids, terpenoids, flavonoids, and cardiac glycosides. Anthraquinones were also detected in the aqueous extract while steroids were absent (Table 2).

<table>
<thead>
<tr>
<th>S/No</th>
<th>Parameter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alkaloids</td>
<td>+++</td>
</tr>
<tr>
<td>2</td>
<td>Saponins</td>
<td>++</td>
</tr>
<tr>
<td>3</td>
<td>Tannins</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Phlobatannins</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Anthraquinones</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Steroids</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Terpenoids</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>Flavonoids</td>
<td>+++</td>
</tr>
<tr>
<td>9</td>
<td>Cardiac glycosides</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>With steroidal ring</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Essential oil</td>
<td>+++</td>
</tr>
</tbody>
</table>

+++ = Present in high concentration; ++ = Present in moderate concentration; + = Slightly or sparingly present; - = Absent

3.2 Result of the Effect of Aqueous Leaf Extract of *Ocimum gratissimum* on Body Weight of the Wistar Rats

Table 3. Effect of *Ocimum gratissimum* extracts on the body weight of the wistar rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Initial Weight</th>
<th>Final Weight</th>
<th>% change in weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (normal control)</td>
<td>293.3±19.4</td>
<td>306.4±18.8</td>
<td>4.5%</td>
</tr>
<tr>
<td>B (CYC control)</td>
<td>237.0±8.4</td>
<td>218.9±42.8</td>
<td>-7.6%</td>
</tr>
<tr>
<td>C (100 mg kg⁻¹ extract)</td>
<td>211.6±4.4</td>
<td>216.2±26.8</td>
<td>4.6%</td>
</tr>
<tr>
<td>D (200 mg kg⁻¹ extract)</td>
<td>163.3±4.0</td>
<td>197.8±9.2</td>
<td>21.1%</td>
</tr>
<tr>
<td>E (Protective I)</td>
<td>188.1±3.9</td>
<td>207.1±26.1</td>
<td>10.1%</td>
</tr>
<tr>
<td>F (Protective II)</td>
<td>168.6±6.8</td>
<td>183.5±18.6</td>
<td>8.8%</td>
</tr>
</tbody>
</table>

*P < 0.05 (statistically significant compared with control), **P < 0.05 (statistically significant compared with myelosuppressed rats)
3.3 Result of the Effect of *Ocimum gratissimum* on the Haematological Parameters of the Treated Rats

Bone marrow suppression occurred in group B rats that were treated with only cyclophosphamide. When compared to group A (negative control) there was no significant (p>0.05) increase in PCV, TWBC, RBC, and Hb in group C and D rats which received only 100 mg/kg and 200 mg/kg of the extract respectively. However, there was a significant increase (p<0.05) in the above-mentioned blood parameters of the group C and D rats when compared to group B which was treated with only cyclophosphamide. The increase was moderately dose-dependent.

The administration of both the extract and cyclophosphamide brought about a protective activity. This was evident in the group E and F rats which had no significant decrease (p>0.05) in HCT, Hb, RBC, and TWBC when compared to the control group. The group E and F rats received 100 mg/kg and 200 mg/kg extract respectively.

The mean differences in RBC, TWBC, HCT, Hb, and platelet of group E were slightly lower when compared to the normal control group. Meanwhile, the HCT, Hb, RBC, TWBC, and platelet amounts are significantly higher (p<0.05) than that of the cyclophosphamide group.

3.4 Effect of Aqueous Extract of *Ocimum gratissimum* leaf on Histological Architecture of Cyclophosphamide treated Wistar Rats

The bone marrow micrograph of the Wistar rats in each of the groups was examined and the following were observed (Plates 1-6).

4. DISCUSSION

In this study, the phytochemical analysis of the aqueous leaf extract of *Ocimum gratissimum* revealed the presence of tannins, sterols, terpenoids, flavonoids, and cardiac glycosides. Anthraquinones were also detected in the aqueous leaf extract while steroids were absent (Table 2). A similar result to this was observed by Okoye [19] and Afolabi [20].

Table 4. Effect of aqueous extract of *Ocimum gratissimum* leaf on some hematological indices of cyclophosphamide treated rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>PCV (%)</th>
<th>WBC (×10^6L^-1)</th>
<th>RBC (×10^6L^-1)</th>
<th>Hb (g/dL^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (normal control)</td>
<td>49.0±2.65</td>
<td>6666.7±231.0</td>
<td>245.0±5.00</td>
<td>17.7±0.91</td>
</tr>
<tr>
<td>B (CYC control)</td>
<td>23.3±3.50</td>
<td>4000.0±400.0</td>
<td>216.7±15.3</td>
<td>14.7±2.88</td>
</tr>
<tr>
<td>C (100mg kg^-1 OG)</td>
<td>45.0±1.00</td>
<td>7333.3±1222.0</td>
<td>236.7±25.2</td>
<td>15.3±0.37</td>
</tr>
<tr>
<td>D (200mg kg^-1 OG)</td>
<td>51.7±6.51</td>
<td>8533.3±2023.2</td>
<td>236.7±15.3</td>
<td>17.6±2.21</td>
</tr>
<tr>
<td>E (Protective I)</td>
<td>35.7±6.14</td>
<td>5400.0±229.2</td>
<td>235.0±8.67</td>
<td>18.9±2.76</td>
</tr>
<tr>
<td>F (Protective II)</td>
<td>39.0±7.14</td>
<td>6266.7±1205.5</td>
<td>246.7±15.3</td>
<td>15.0±2.70</td>
</tr>
</tbody>
</table>

P < 0.05 (statistically significant compared with control); †P < 0.05 (statistically significant compared with myelosuppressed rats)

OG = Ocimum gratissimum; CYC = Cyclophosphamide

Table 5. Effect of aqueous extract of *Ocimum gratissimum* leaf on some hematological indices of cyclophosphamide treated rats continued

<table>
<thead>
<tr>
<th>Groups</th>
<th>MCV (fl)</th>
<th>MCH (pg)</th>
<th>MCHC (g/dL^-1)</th>
<th>PLATELETS (×10^6L^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (normal control)</td>
<td>0.20±0.01</td>
<td>0.68±0.04</td>
<td>0.28±0.02</td>
<td>243.3±5.77</td>
</tr>
<tr>
<td>B (CYC control)</td>
<td>0.20±0.05</td>
<td>0.69±0.18</td>
<td>0.37±0.23</td>
<td>150.0±20.0</td>
</tr>
<tr>
<td>C (100mg kg^-1 OG)</td>
<td>0.19±0.02</td>
<td>0.65±0.08</td>
<td>0.26±0.01</td>
<td>220.0±20.0</td>
</tr>
<tr>
<td>D (200mg kg^-1 OG)</td>
<td>0.22±0.03</td>
<td>0.75±0.12</td>
<td>0.26±0.02</td>
<td>240.0±17.3</td>
</tr>
<tr>
<td>E (Protective I)</td>
<td>0.22±0.03</td>
<td>0.74±0.09</td>
<td>0.31±0.02</td>
<td>230.0±30.0</td>
</tr>
<tr>
<td>F (Protective II)</td>
<td>0.18±0.04</td>
<td>0.61±0.14</td>
<td>0.30±0.01</td>
<td>240.0±10.0</td>
</tr>
</tbody>
</table>

P < 0.05 (statistically significant compared with control); †P < 0.05 (statistically significant compared with myelosuppressed rats)

OG = Ocimum gratissimum; CYC = Cyclophosphamide

Egwuatu et al., JAMMR, 34(22): 33-43, 2022; Article no.JAMMR.91719
Plate 1. Photomicrograph of the bone marrow of Wistar rats in group A showing clustered normal cells (circles) with clearly visible connective tissues [H & E. mag. 400x]

Plate 2. Photomicrograph of the atrophied bone marrow of Wistar rats in group B showing myelodysplastic syndrome (yellow star) together with a clear appearance of tumor cell (red star) (lymphoid progenitor cells) which usually have a yellow appearance [H & E mag. 400x]

Plate 3. Photomicrograph of the bone marrow of Wistar rat in group C showing normal clustered cells with the presence of megakaryocytes and hematopoietic chords [H & E. mag 400x]
Plate 4. Photomicrograph of the bone marrow of Wistar rat in group D showing normal clustered cells with the presence of megakaryocytes and hematopoietic chords [H & E. mag. 400x]

Plate 5. Photomicrograph of the bone marrow of Wistar rats in group E showing the destruction of the blood-forming cells in the bone marrow. This condition can be referred to as myelodysplastic syndrome mainly of secondary origin [H & E. mag. 400x]

Plate 6. Photomicrograph of the bone marrow of group F rats showing apparent normocellular (circles) bone marrow with slight loss of some hematopoietic cells which appears quite necrotized (star) [H & E. mag. 400x]
de Vasconcelos [21] reported that the phytochemical constituents of a plant are largely affected by the type of soil and environment in which the plant is grown, this could therefore be the reason why in contrast to the result of this study, Akinmoladun [22] reported the presence of steroids.

The high content of flavonoids and alkaloids in the leaf extract could be the reason for the protective activity observed in the leaf extract. “Alkaloids are known to play some metabolic roles and control development in a living system. They also have a protective role on animals” [14]. “Flavonoids are free radical scavengers, super antioxidants, and potent water soluble which prevent oxidative cell damage and have strong anticancer activity” [23]. The presence of alkaloids and flavonoids in this study therefore could be the reason for the protective actions of Ocimum gratissimum. Also, flavonoids could have been the reason for the reduction in the oxidative cell damage reported in this study. This is in agreement with the studies carried out by Thabrew [24], Halliwell, and Gutteridge [25].

Histological results in the Normal control group showed normal cells with clearly visible connective tissues and it is therefore in agreement with the study made by Travlos [26]. The atrophied bone marrow seen in the rats induced with bone marrow suppression is indicative of myelodysplastic syndrome [27-31]. This is a result of the myelotoxicity activity of cyclophosphamide and its ability to cause bone marrow lesions, as also recorded by Travlos [26]. The normal clustered cells in the rats that were treated with only extracts imply that aqueous extract of Ocimum gratissimum does not have any toxic effect on the bone marrow cells of Wistar rats [28-35].

Administering the rats with both the leaf extract and cyclophosphamide brought about a protective effect against the cyclophosphamide-induced myelotoxicity in the Wistar rats [36-39]. This was evident in the treated rats which showed reduced cell death in their histo-architecture. This might be a result of the presence of alkaloids and flavonoids in the extract. According to Onwueyiagba [23], McMahon [40], and Okeye [19], “flavonoids and alkaloids are free radical scavengers, super antioxidants, and potent water-soluble agents which prevent oxidative cell damage and have strong anticancer activity”.

“Chemotherapy-induced anemia is one of the most common side effects experienced by cancer patients, occurring in approximately 70-90% of those undergoing treatment for the disease” [41]. “This is because chemotherapeutic drugs kill rapidly dividing cells in the body including cancer cells and normal cells which include red blood cells at the same time suppress bone marrow’s ability to produce new ones, resulting in a decrease in blood Hb level” [17]. “In this study, it was observed that gaging the animals with Ocimum gratissimum extract enhanced the Hb level, platelet count, TWBC, PCV, and RBC count which was depleted by cyclophosphamide treatment in the cyclophosphamide control group [42-46]. The effect of this plant extract on the hematological parameters may be due to free radical scavenging activity or interference with the formation of the active metabolite of cyclophosphamide through the inhibition of the cytochrome p-450 enzyme system” [17].

5. CONCLUSION

Aqueous extracts of Ocimum gratissimum leaf possess a protective effect against cyclophosphamide-induced bone marrow toxicity and consequently justify the use of this extract as a tonic in traditional medicine.

CONSENT

It is not applicable.

ETHICAL APPROVAL

Ethical clearance was sought for and approved by the Research and Ethical Clearance committee, Faculty of Basic Medical Sciences, College of Medicine, Enugu State University of Science and Technology (ESUCOM/FBMS/ETR/2022/013).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

42. Luciane AG, Aline de Moraes P, Mirtes C. Biological effects of Ocimum gratissimum L. are due to synergic action among multiple compounds present in essential oil. Journal of Natural Medicines. 2010;64(4):436-441. DOI: 10.1007/s11418-010-0429-2

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/91719

© 2022 Egwuatu et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.