COVID-19 Immunopathology, Particle Pollution, and Iron Balance

Main Article Content

Mark Whiteside
J. Marvin Herndon

Abstract

The coronavirus (COVID-19) pandemic exploded into a world already reeling from climate change, degradation of natural systems, and pandemics of air pollution and noncommunicable diseases. These pandemics are interrelated; air pollution, the world’s biggest killer, is a major contributor to noncommunicable disease. Air pollution is a probable cofactor in the spread and severity of COVID-19. There are shared mechanisms of injury by the emerging COVID-19 immunopathology, ultrafine air pollutants, and chronic degenerative disease. A key feature of each is oxidative stress, including that caused by iron dysregulation. Exogenous combustion-derived magnetite nanoparticles found in human brains and hearts are strongly implicated in the development of cardiometabolic and neurogenerative disease. Altered iron balance favoring excess reactive or misplaced iron is probably the most important predisposing condition for severe COVID-19 infection. Ultrafine-particle/nanoparticle toxicity and COVID-19 immunopathology on the subcellular level are both characterized by iron dysregulation, mitochondrial dysfunction, and endoplasmic reticulum stress. Primary sources of the most damaging ultrafine pollution particles are fossil fuel combustion, vehicle emissions, and coal fly ash utilized in undisclosed tropospheric aerosol geoengineering. The same ultrafine particles when emitted or placed into the troposphere alter the world’s cloud layers and reduce atmospheric convection, directly contributing to climate change and global warming. Pandemics can only be tackled by international cooperation. Immediate steps that must be taken include monitoring and control of ultrafine particulate air pollution, and prompt cessation of geoengineering operations.

Keywords:
Virology, pandemic, cardiology, hematology, aerosols, coal fly ash, particulate air pollution, magnetite, nanoparticles, geoengineering.

Article Details

How to Cite
Whiteside, M., & Herndon, J. M. (2020). COVID-19 Immunopathology, Particle Pollution, and Iron Balance. Journal of Advances in Medicine and Medical Research, 32(18), 43-60. https://doi.org/10.9734/jammr/2020/v32i1830654
Section
Review Article

References

Toland J. Infamy: Pearl Harbor and its aftermath: Anchor; 2014.

Carrington D, Taylor M. Air pollution is the ‘new tobacco’, warns WHO head. The Guardian; 2018.

Xie P, Ma W, Tang H, Liu D. Severe COVID-19: A review of recent progress with a look toward the future. Frontiers in Public Health. 2020;8:189.

Johnson CK, Hitchens PL, Pandit PS, Rushmore J, Evans TS, Young CC, et al. Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proceedings of the Royal Society B. 2020;287(1924):20192736.

Chakraborty I, Maity P. COVID-19 outbreak: Migration, effects on society, global environment and prevention. Science of the Total Environment. 2020;138882.

McKee M, Stuckler D. If the world fails to protect the economy, COVID-19 will damage health not just now but also in the future. Nature Medicine. 2020;26(5):640-2.

Martines RB, Ritter JM, Matkovic E, Gary J, Bollweg BC, Bullock H, et al. Pathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United States. Emerging Infectious Diseases. 2020;26(9):2005.

Jayaweera M, Perera H, Gunawardana B, Manatunge J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environmental Research. 2020;109819.

Matheson NJ, Lehner PJ. How does SARS-CoV-2 cause COVID-19? Science. 2020;369(6503):510-1.

Hedrich CM. COVID-19–considerations for the paediatric rheumatologist. Clinical Immunology. 2020;108420.

Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clinical Rheumatology. 2020;1.

Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature Reviews Immunology. 2020; 1-8.

Mortaz E, Tabarsi P, Varahram M, Folkerts G, Adcock IM. The immune response and immunopathology of COVID-19. Front Immunol. 2020;11:2037.

Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virologica Sinica. 2020;1-6.

Halstead SB, Mahalingam S, Marovich MA, Ubol S, Mosser DM. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. The Lancet Infectious Diseases. 2010;10(10):712-22.

Takada A, Kawaoka Y. Antibody‐dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Reviews in medical virology. 2003;13(6):387-98.

Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: immunology and treatment options. Clinical Immunology. 2020;108448.

Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clinical Immunology. 2020;108393.

Menikou S, Langford PR, Levin M. Kawasaki disease: the role of immune complexes revisited. Frontiers in immunology. 2019;10:1156.

Iwasaki A, Yang Y. The potential danger of suboptimal antibody responses in COVID-19. Nature Reviews Immunology. 2020;1-3.

de Alwis R, Chen S, Gan ES, Ooi EE. Impact of immune enhancement on Covid-19 polyclonal hyperimmune globulin therapy and vaccine development. EBioMedicine. 2020;102768.

Cao X. COVID-19: immunopathology and its implications for therapy. Nature reviews immunology. 2020;20(5):269-70.

Eroshenko N, Gill T, Keaveney MK, Church GM, Trevejo JM, Rajaniemi H. Implications of antibody-dependent enhancement of infection for SARS-CoV-2 countermeasures. Nature Biotechnology. 2020;1-3.

Wang S-F, Tseng S-P, Yen C-H, Yang J-Y, Tsao C-H, Shen C-W, et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochemical and biophysical research communications. 2014;451(2):208-14.

Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, et al. COVID-19: immunopathogenesis and Immunotherapeutics. Signal Transduction and Targeted Therapy. 2020;5(1):1-8.

Oldstone MB. Viral persistence. Cell. 1989;56(4):517-20.

Drakesmith H, Prentice A. Viral infection and iron metabolism. Nature Reviews Microbiology. 2008;6(7):541-52.

Yilmaz N, Eren E. Covid-19's passion for iron and fear of oxygen: Perhaps covid-19 craves the atmospheric environment in ancient times Researchgatenet; 2020.

Liu W, Zhang S, Nekhai S, Liu S. Depriving iron supply to the virus represents a promising adjuvant therapeutic against viral survival. Current Clinical Microbiology Reports. 2020;1-7.

Winn NC, Volk KM, Hasty AH. Regulation of tissue iron homeostasis: the macrophage “ferrostat”. JCI insight. 2020;5(2).

Kernan KF, Carcillo JA. Hyperferritinemia and inflammation. International immunology. 2017;29(9):401-9.

Walker EM, Walker SM. Effects of iron overload on the immune system. Annals of Clinical & Laboratory Science. 2000;30(4):354-65.

Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clinics and Practice. 2020;10(2).

Edeas M, Saleh J, Peyssonnaux C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? International Journal of Infectious Diseases; 2020.

Colafrancesco S, Alessandri C, Conti F, Priori R. COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome? Autoimmunity Reviews. 2020;102573.

Dorward DA, Russell CD, Um IH, Elshani M, Armstrong SD, Penrice-Randal R, et al. Tissue-specific tolerance in fatal Covid-19. medRxiv; 2020.

Handa P, Thomas S, Morgan‐Stevenson V, Maliken BD, Gochanour E, Boukhar S, et al. Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis. Journal of Leukocyte Biology. 2019;105(5):1015-26.

Weinberg ED. The hazards of iron loading. Metallomics. 2010;2(11):732-40.

Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. Jama; 2020.

Basuli D, Stevens RG, Torti FM, Torti SV. Epidemiological associations between iron and cardiovascular disease and diabetes. Frontiers in pharmacology. 2014;5:117.

Fernández-Real JM, Manco M. Effects of iron overload on chronic metabolic diseases. The lancet Diabetes & endocrinology. 2014;2(6):513-26.

Kim MK, Baek KH, Song K-H, Kang MI, Choi JH, Bae JC, et al. Increased serum ferritin predicts the development of hypertension among middle-aged men. American Journal of Hypertension. 2012;25(4):492-7.

Valenti L, Maloberti A, Signorini S, Milano M, Cesana F, Cappellini F, et al. Iron stores, hepcidin, and aortic stiffness in individuals with hypertension. PloS one. 2015;10(8):e0134635.

Gammella E, Recalcati S, Rybinska I, Buratti P, Cairo G. Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. Oxidative medicine and cellular longevity. 2015;2015.

Sangani RG, Ghio AJ. Iron, human growth, and the global epidemic of obesity. Nutrients. 2013;5(10):4231-49.

Nikonorov AA, Skalnaya MG, Tinkov AA, Skalny AV. Mutual interaction between iron homeostasis and obesity pathogenesis. Journal of Trace Elements in Medicine and Biology. 2015;30:207-14.

Czaja AJ. iron disturbances in chronic liver diseases other than haemochromatosis–pathogenic, prognostic, and therapeutic implications. Alimentary Pharmacology & Therapeutics. 2019;49(6):681-701.

Panwar B, Gutiérrez OM, editors. Disorders of iron metabolism and anemia in chronic kidney disease. Seminars in nephrology; 2016: Elsevier.

Torti SV, Manz DH, Paul BT, Blanchette-Farra N, Torti FM. Iron and cancer. Annual Review of Nutrition. 2018;38:97-125.

Kim H, Shin C, Baik I. Associations between lifestyle factors and iron overload in Korean Adults. Clinical Nutrition Research. 2016;5(4):270-8.

Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Baldé AB, et al. The lancet commission on pollution and health. The lancet. 2018;391(10119):462-512.

Friedrich M. Air pollution is greatest environmental threat to health. JAMA. 2018;319(11):1085-.

Jeremy W. Air pollution and brain health: an emerging issue. Lancet. 2017;390:1345-422.

Whiteside M, Herndon JM. Aerosolized coal fly ash: Risk factor for neurodegenerative disease. Journal of Advances in Medicine and Medical Research. 2018;25(10):1-11.

Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, et al. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation. 2004;109(21):2655-71.

Pope A, Burnett R, Thun M, Thurston G. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002;287(9):1132-41.

Whiteside M, Herndon JM. Coal fly ash aerosol: Risk factor for lung cancer. Journal of Advances in Medicine and Medical Research. 2018;25(4):1-10.

Peacock JL, Anderson HR, Bremner SA, Marston L, Seemungal TA, Strachan DP, et al. Outdoor air pollution and respiratory health in patients with COPD. Thorax. 2011;66(7):591-6.

Whiteside M, Herndon JM. Aerosolized coal fly ash: Risk factor for COPD and respiratory disease. Journal of Advances in Medicine and Medical Research. 2018;26(7):1-13.

Graham NM. The epidemiology of acute respiratory infections in children and adults: a global perspective. Epidemiologic reviews. 1990;12:149-78.

Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung S-H, Mortimer K, et al. Air pollution and noncommunicable diseases: a review by the forum of international respiratory Societies’ Environmental Committee, Part 2: air pollution and organ systems. CHEST. 2019;155(2):417-26.

Lelieveld J, Pozzer A, Pöschl U, Fnais M, Haines A, Münzel T. Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovascular Research; 2020.

Herndon JM, Whiteside M, Baldwin I. Fifty Years after How to Wreck the Environment: Anthropogenic extinction of life on earth. J Geog Environ Earth Sci Intn. 2018;16(3):1-15.

Herndon JM, Hoisington RD, Whiteside M. Chemtrails are not contrails: Radiometric evidence. J Geog Environ Earth Sci Intn. 2020;24(2):22-9.

Herndon JM, Whiteside M. Global environmental warfare. Advances in Social Sciences Research Journal. 2020;7(4):411-22.

Herndon JM, Whiteside M. Further evidence that particulate pollution is the principal cause of global warming: Humanitarian considerations. Journal of Geography, Environment and Earth Science International. 2019;21(1):1-11.

Herndon JM, Whiteside M. California wildfires: Role of undisclosed atmospheric manipulation and geoengineering. J Geog Environ Earth Sci Intn. 2018;17(3):1-18.

Herndon JM, Whiteside M. Contamination of the biosphere with mercury: Another potential consequence of on-going climate manipulation using aerosolized coal fly ash J Geog Environ Earth Sci Intn. 2017;13(1):1-11.

Herndon JM, Hoisington RD, Whiteside M. Deadly ultraviolet UV-C and UV-B penetration to Earth’s surface: Human and environmental health implications. J Geog Environ Earth Sci Intn. 2018;14(2):1-11.

Herndon JM. Air pollution, not greenhouse gases: The principal cause of global warming. J Geog Environ Earth Sci Intn. 2018;17(2):1-8.

Herndon JM, Whiteside M. Unacknowledged potential factors in catastrophic bat die-off arising from coal fly ash geoengineering. Asian Journal of Biology. 2019;8(4):1-13.

Herndon JM, Williams DD, Whiteside M. Previously unrecognized primary factors in the demise of endangered torrey pines: A microcosm of global forest die-offs. J Geog Environ Earth Sci Intn 2018;16(4):1-14.

Whiteside M, Herndon JM. Previously unacknowledged potential factors in catastrophic bee and insect die-off arising from coal fly ash geoengineering Asian J Biol. 2018;6(4):1-13.

Whitney MC, Cristol DA. Impacts of sublethal mercury exposure on birds: A detailed review. Reviews of Environmental Contamination and Toxicology Volume 244: Springer. 2017;113-63.

Herndon JM, Whiteside M. Further evidence of coal fly ash utilization in tropospheric geoengineering: Implications on human and environmental health. J Geog Environ Earth Sci Intn. 2017;9(1):1-8.

Tishmack JK, Burns PE. The chemistry and mineralogy of coal and coal combustion products. Geological Society, London, Special Publications. 2004;236(1):223-46.

Herndon JM, Whiteside M. Aerosol particulates, SARS-CoV-2, and the broader potential for global devastation. Open Access Journal of Internal Medicine. 2020;3(1):14-21.

Cui Y, Zhang Z-F, Froines J, Zhao J, Wang H, Yu S-Z, et al. Air pollution and case fatality of SARS in the People's Republic of China: an ecologic study. Environmental Health. 2003;2(1):15.

Setti L, Passarini F, De Gennaro G, Baribieri P, Perrone MG, Borelli M, et al. SARS-Cov-2 RNA Found on Particulate Matter of Bergamo in Northern Italy: First Preliminary Evidence. medRxiv. 2020;04(15):20065995.

Yoriya S, Tepsri P. Separation process and microstructure-chemical composition relationship of cenospheres from lignite fly ash produced from coal-fired power plant in Thailand. Applied Sciences. 2020;10(16):5512.

Yoriya S, Intana T, Tepsri P. Separation of cenospheres from lignite fly ash using acetone–water mixture. Applied Sciences. 2019;9(18):3792.

Bao L, Zhang G, Lei Q, Li Y, Li X, Hwu Y, et al. Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2015;359:167-72.

Ogen Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to the coronavirus (COVID-19) fatality rate. Science of The Total Environment. 2020;138605.

Andree BPJ. Incidence of COVID-19 and Connections with Air Pollution Exposure: Evidence from the Netherlands. The World Bank; 2020.

Zoran MA, Savastru RS, Savastru DM, Tautan MN. Assessing the relationship between surface levels of PM2. 5 and PM10 particulate matter impact on Covid-19 in Milan, Italy. Science of The Total Environment. 2020;738:139825.

Karan A, Ali K, Teelucksingh S, Sakhamuri S. The impact of air pollution on the incidence and mortality of COVID-19. Global Health Research and Policy. 2020;5(1):1-3.

Saikia BK, Saikia J, Rabha S, Silva LF, Finkelman R. Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geoscience Frontiers. 2018;9(3):863-75.

Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, et al. Adverse cardiovascular effects of air pollution. Nature Reviews Cardiology. 2009;6(1):36.

Ghio A. Particle exposures and infections. Infection. 2014;42(3):459-67.

Miyata R, van Eeden SF. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicology and applied pharmacology. 2011;257(2):209-26.

Fujii T, Hayashi S, Hogg JC, Vincent R, Van Eeden SF. Particulate matter induces cytokine expression in human bronchial epithelial cells. American journal of respiratory cell and molecular biology. 2001;25(3):265-71.

Aztatzi-Aguilar OG, Uribe-Ramírez M, Arias-Montaño JA, Barbier O, De Vizcaya-Ruiz A. Acute and subchronic exposure to air particulate matter induces expression of angiotensin and bradykinin-related genes in the lungs and heart: Angiotensin-II type-I receptor as a molecular target of particulate matter exposure. Particle and Fibre Toxicology. 2015;12(1):17.

Mutlu GM, Green D, Bellmeyer A, Baker CM, Burgess Z, Rajamannan N, et al. Ambient particulate matter accelerates coagulation via an IL-6–dependent pathway. The Journal of Clinical Investigation. 2007;117(10):2952-61.

Zhao Q, Chen H, Yang T, Rui W, Liu F, Zhang F, et al. Direct effects of airborne PM2. 5 exposure on macrophage polarizations. Biochimica et Biophysica Acta (BBA)-General Subjects. 2016;1860(12):2835-43.

Goldsmith C-A, Frevert C, Imrich A, Sioutas C, Kobzik L. Alveolar macrophage interaction with air pollution particulates. Environmental Health Perspectives. 1997;105(suppl 5):1191-5.

Grigsby JD. Detrital magnetite as a provenance indicator. Journal of Sedimentary Research. 1990;60(6):940-51.

Valeev D, Kunilova I, Alpatov A, Varnavskaya A, Ju D. Magnetite and carbon extraction from coal fly ash using magnetic separation and flotation methods. Minerals. 2019;9(5):320.

Gieré R. Magnetite in the human body: Biogenic vs. anthropogenic. Proceedings of the National Academy of Sciences. 2016;113(43):11986-7.

Grassi-Schultheiss P, Heller F, Dobson J. Analysis of magnetic material in the human heart, spleen and liver. Biometals. 1997;10(4):351-5.

Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ. Magnetite biomineralization in the human brain. Proceedings of the National Academy of Sciences. 1992;89(16):7683-7.

Kirschvink JL. Microwave absorption by magnetite: a possible mechanism for coupling nonthermal levels of radiation to biological systems. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association. 1996;17(3):187-94.

Rajendran K, Sen S. Metallic nanoparticles in the food industry: advantages and limitations. Nanotechnology in Nutraceuticals: CRC Press. 2016;79-108.

Maher BA, Ahmed IA, Karloukovski V, MacLaren DA, Foulds PG, Allsop D, et al. Magnetite pollution nanoparticles in the human brain. Proc Nat Acad Sci. 2016;113(39):10797-801.

Plascencia-Villa G, Ponce A, Collingwood JF, Arellano-Jiménez MJ, Zhu X, Rogers JT, et al. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease. Scientific Reports. 2016;6:24873.

Vu D-H, Bui H-B, Kalantar B, Bui X-N, Nguyen D-A, Le Q-T, et al. Composition and morphology characteristics of magnetic fractions of coal fly ash wastes processed in high-temperature exposure in thermal power plants. Applied Sciences. 2019;9(9):1964.

Calderón-Garcidueñas L, González-Maciel A, Mukherjee PS, Reynoso-Robles R, Pérez-Guillé B, Gayosso-Chávez C, et al. Combustion-and friction-derived magnetic air pollution nanoparticles in human hearts. Environmental Research. 2019;108567.

Gorobets O, Gorobets S, Koralewski M. Physiological origin of biogenic magnetic nanoparticles in health and disease: from bacteria to humans. International Journal of Nanomedicine. 2017;12:4371.

Whiteside M, Herndon JM. Geoengineering, coal fly ash and the new heart-Iron connection: Universal exposure to iron oxide nanoparticulates. Journal of Advances in Medicine and Medical Research. 2019;31(1):1-20.

Sutto TE. Magnetite fine particle and nanoparticle environmental contamination from industrial uses of coal. Environmental Pollution. 2018;243:528-33.

Chen Y, Shah N, Huggins FE, Huffman GP. Transmission electron microscopy investigation of ultrafine coal fly ash particles. Environ Science and Technogy. 2005;39(4):1144-51.

Könczöl M, Ebeling S, Goldenberg E, Treude F, Gminski R, Gieré R, et al. Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-kB. Chem Res Toxicol. 2011;24(9):1460-75.

Ramesh V, Ravichandran P, Copeland CL, Gopikrishnan R, Biradar S, Goornavar V, et al. Magnetite induces oxidative stress and apoptosis in lung epithelial cells. Mol Cell Biochem. 2012;363(1-2):225-34.

Rojas JM, Sanz-Ortega L, Mulens-Arias V, Gutiérrez L, Pérez-Yagüe S, Barber DF. Superparamagnetic iron oxide nanoparticle uptake alters M2 macrophage phenotype, iron metabolism, migration and invasion. Nanomedicine: Nanotechnology, Biology and Medicine. 2016;12(4):1127-38.

Shen C-C, Liang H-J, Wang C-C, Liao M-H, Jan T-R. Iron oxide nanoparticles suppressed T helper 1 cell-mediated immunity in a murine model of delayed-type hypersensitivity. International Journal of Nanomedicine. 2012;7:2729.

Shen C-C, Wang C-C, Liao M-H, Jan T-R. A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice. International Journal of Nanomedicine. 2011;6:1229.

Araujo JA, Nel AE. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Particle and Fibre Toxicology. 2009;6(1):24.

Terzano C, Di Stefano F, Conti V, Graziani E, Petroianni A. Air pollution ultrafine particles: toxicity beyond the lung. Eur Rev Med Pharmacol Sci. 2010;14(10):809- 21.

Peters A, Veronesi B, Calderón-Garcidueñas L, Gehr P, Chen LC, Geiser M, et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Particle and Fibre Toxicology. 2006;3(1):1-13.

Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP, et al. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano. 2017;11(5):4542-52.

Maher B, González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Calderón-Garcidueñas L. Iron-rich air pollution nanoparticles: An unrecognised environmental risk factor for myocardial mitochondrial dysfunction and cardiac oxidative stress. Environmental Research. 2020;188:109816.

Gonzalez-Maciel A, Reynoso-Robles R, Torres-Jardon R, Mukherjee PS, Calderon-Garciduenas L. Combustion-derived nanoparticles in key brain target cells and organelles in young urbanites: culprit hidden in plain sight in Alzheimer’s Disease Development. Journal of Alzheimer's Disease. 2017;59(1):189-208.

Liu NM, Miyashita L, Maher BA, McPhail G, Jones CJ, Barratt B, et al. Evidence for the presence of air pollution nanoparticles in placental tissue cells. Science of The Total Environment. 2020;142235.

Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxidants & Redox Signaling. 2014;21(3):396-413.

Madkour LH. Endoplasmic Reticulum (ER) stress as a mechanism for NP-induced toxicity. Nanoparticles Induce Oxidative and Endoplasmic Reticulum Stresses: Springer; 2020. p. 403-50.

Xue Y, Schmollinger S, Attar N, Campos OA, Vogelauer M, Carey MF, et al. Endoplasmic reticulum–mitochondria junction is required for iron homeostasis. Journal of Biological Chemistry. 2017;292(32):13197-204.

Versteeg GA, Van De Nes PS, Bredenbeek PJ, Spaan WJ. The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations. Journal of Virology. 2007;81(20):10981-90.

Fung TS, Liu DX. Coronavirus infection, ER stress, apoptosis and innate immunity. Frontiers in microbiology. 2014;5:296.

Lu D, Luo Q, Chen R, Zhuansun Y, Jiang J, Wang W, et al. Chemical multi-fingerprinting of exogenous ultrafine particles in human serum and pleural effusion. Nature Communications. 2020;11(1):1-8.

Linak WP, Yoo J-I, Wasson SJ, Zhu W, Wendt JO, Huggins FE, et al. Ultrafine ash aerosols from coal combustion: Characterization and health effects. Proceedings of the Combustion Institute. 2007;31(2):1929-37.

Kwon H-S, Ryu MH, Carlsten C. Ultrafine particles: unique physicochemical properties relevant to health and disease. Experimental & Molecular Medicine. 2020;1-11.

Herndon JM, Whiteside M. Geophysical consequences of tropospheric particulate heating: Further evidence that anthropogenic global warming is principally caused by particulate pollution. Journal of Geography, Environment and Earth Science International. 2019;22(4):1-23.

Junkermann W, Hacker JM. Ultrafine particles in the lower troposphere: major sources, invisible plumes, and meteorological transport processes. Bulletin of the American Meteorological Society. 2018;99(12):2587-602.

Pall ML. Electromagnetic fields act via activation of voltage‐gated calcium channels to produce beneficial or adverse effects. Journal of cellular and molecular medicine. 2013;17(8):958-65.

Gaasch JA, Geldenhuys WJ, Lockman PR, Allen DD, Van der Schyf CJ. Voltage-gated calcium channels provide an alternate route for iron uptake in neuronal cell cultures. Neurochemical research. 2007;32(10):1686-93.

Oudit GY, Trivieri MG, Khaper N, Liu PP, Backx PH. Role of L-type Ca2+ channels in iron transport and iron-overload cardiomyopathy. Journal of Molecular Medicine. 2006;84(5):349-64.

Hernández-Morales M, Shang T, Chen J, Han V, Liu C. Lipid Oxidation Induced by RF Waves and Mediated by Ferritin Iron Causes Activation of Ferritin-Tagged Ion Channels. Cell reports. 2020;30(10):3250-60. e7.